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Acceleration Waves in Elastiz-Plastic Materials

by

-
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' Abstract. “Acceleration waves in elastic-plastic materials are studied in
some detail on the vasis of a nonlinear thermodynamical theory of elastic~
plastic continua. Attention is confined mainly to non-conducting nmedia,

i
: but the developments are, otherwise, general. Formulae for wave speeds

are derived, fronts of plastic loading and elastic unloading are discusse
‘ f and higher corder discorntinuities are shown to have the same characteristic
speeds as those of acceleration waves. An example concerning propagation

of plastic waves in a medium undergoing uni-axial motion is included.
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is 2n independeni thermodynamic variable and then obgain an expression

for the rate of production of entropy in a non-conducting medium. It is

o

known resuit in nonlinear elasticity that in a non-conducting elastic

o

erial (and in the sbsence of heat supply) the time rate of entropy

¢ I

vanishes and the so-called acoustic tensor is homentropic. In general,
2s snown in sections 3 and L, suca is not the case for an elastic~plastic
material.

In section 4, waves are represented as propagating surfaces in a
non-condéucting elastic«plastié continuum, across vwhich there exist jumps
in the values of certain mechanical and thermel variables. Acceleration
waves, or singular surfaces with respect to particle acceleration, are
Giscussed in detail and formulae for wave speeds are derived using the
compatibility conditions of Hademard {13] for jumps in piecewise continuous
functions of position and time. Waves propagating through regioas under-
going plastic deformation, sufficient conditions for the existence of re2l
wave speeds, and fronts of plastic loading and elastic unloading are
treated in seciions L4-6. Singular surfaces with respect to any order
derivatives (in time, position or mixed) of acceleration are shown in
section 7 to have the same characteristic speeds as those of the accelera-
tion disconmtinuities. Finally, in section 8, we consider the simple
example of propagation of plastic waves in a medium undergoing uni-axial
motion. Other examples, such as plastic waves in simple shear or propa-
gation of spherically symmetric plastic waves, can be d;scussed in a
similar fashion.

The zpove developments for a non-conducting medium in sections 3-7

z»z valié for a work-hardening elastic- lastic material which is initiall
g

3.
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anisotropic and are zlso applicable to the limiting case of an elastic-
perfectly plastic material. OFf special interest is the simple formula
that the jump in the entropy production is linear in the jump of plastic
strain rote. Tnis and other results in section 4 hold also for a definite
conductor, i.e., for a medium whose heat conduction vector has the form~

of Fourier's law.
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2. Notation and Preliminaries

1~t the motion of the continuum be referred to a fixed system of
rectangular Cartesian axes and denote the positicn of a typical particla

at time ¢ byﬁ

X, = xi(X > 8) (2.1)
where XA is a reference position of the particle. We require the mapping
(2.1) to be single-valued and have continuous partial derivatives with
respect ©o its arguments, except at some singular points, curves and
surfaces. We use the notation F = F(t) and designate partial dif-
ferentiation with respect to X, or x, as ( ),A or ( ),i R
respectively. Iatin indices take values 1,2,3 and, except when noted
otherwise, the usual summation convention for Cartesian tensors will be
employed.

The components of velocity and acceleration at the point X

at time t are, respectively,

'—-a—’ . .o —-—a-o
X, = 5% xi(XA, t) Xy = 5% xi(XA’ t) (2.2)

where a superposed dot stands for differentiation with respect to t ,

holding XA fixed. We define the strain tensor eKL by

*We use the same symbol for a function and its value without confusion.
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(g x %en ™ 0) (2-3)

ané note that its matericl time derivative is

1
= = {2 = e '\
7 Ky B n % ) (2.4)
where 5KL is the Kronecker symbol and
N 1 (' Lo 2.5
QKZ = 2 xk’z T J{ﬂ,,k) 3 ( ’7)

is the rate of deformation tensor.

In terms of the non-symmetric Plola-Kircnnoff stress tensor T

s

kK
the eruations of nmotion may be written in the form

, S, =5 ) (2.7)

where % is the mass density of the reference configuration, Fk is

the externally applied oody force per unit mass and Sy, is the symmeiric
Piocla-Kirchhoff stress tenzor. Let ho be the flux of heat across a

surface of ithe continuum at time t and let QK be the corresponding

.

“Tre notation here is the same as that used by Green and Naghdi [1, Sec. 21.

6.




rez? finw Vector, Dotz neestzed per ol Tinms 2nd per pnii arez In fhe
reference corfigmmetion. Trzn, trhe (locel) ensrzy eguation and the
{3cc2i) Cizusius-Drier Snmcouelity are
-2 - U+ ¢ s =9
2 z e. .. 8. U+ =, € >
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’3-
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&= - = - — L
P TS 8,758 -5 20
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U 1is Tne internzi epergy ver unit —2ss, S 1is The extropy per unit

T(> 6) is the temerature.

. is uneliered when the continuum is
*

subjected to superrosed rigid body xoticns at ail gimes t = (T:a) ,

wnere &a 1is & ccnpstant. In

constitutive equztiorns which

lacement gracdient, velocit
o 3

mzinly involve siress, siress rate, dis-

such eguetions must remain

unaliered by superposed rigid poly rwoiions. As noted in [1], tne

displacement gradient and the velocity gradient rust be replaced by

em and eKL

the strain rate tensor.

taken to be s, and SKL R

KL

rigid body motions.

and these will be referred o as ine sirain tensor and

Also the siress and the siress rate may be

both being inveriant under superposead

{2.8) -
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3. _Constitutive Equations and Some Related Results

Ye summaerize here the principal results from the theory of elastic~
plastic continua as developed by Green and Naghdi [1,2] and also obtain some

related results for later use. We limit the discussion to the material de-

then the temperature) as an independent thermodynamic variable.

Let the strain tensor e, be defined at each point of the continuum
by (2.3) and let e%L , a symmetric tensor with the same invariance
» . .+ . . .
properties as ey , denote plastic strain. We introduce a constitutive

assumpiion for Se1, in the form

s}q_‘ = sm(e}qjﬁ e?{ll’ S) M (3‘1)
and admit the existence of a scalar-valued continuously differentiable

function f(sKL, e%L, S) -- called a yield or = loading function -- such

that the equation
(s P,y 8)=K (3.2)

for a fixed value of K and e%L represents a hypersurface in seven-
dimensional Euclidean space -- six components of Sy, and the entropy

S . The scalar ¥ , a work-hardening parameter, depends on the past

A lthough we assume that e%L is symmetric, the developments which
follow can be readily modified to accommodate a non-symmetric
plastic strain tensor included in [2,14],

8.
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history of the motion and is assumed to be initially positive.

of change of ¢ and the plastic strain rate e%L~ap§Jig§gp§g@ent of the

particular time scale used to calculate the rate of change.

3 of éKL and é 3 and k and e
& = 0
éh:o
é%l=o
éh#o
and
| where

(
2 aSKL

%S1x

elastic-plastic state.

SR S O WY

¥ is a linear function of éKL’

]
e
XL

KL

and S ; e%L is a linear function

and vwhere the partial derivative agf

KL

“  must sabisfy the requirements

when f <K with K=0
. A
vhen f=¢% with ¢=0,<0 ,
. A
when f=¢ with ¢=0,f=0
A
when £f= and £>0 ,
'~ Su -
K= 0 when ey, = o ,
/\ af . af'
f:aSKLSm'F'g'S‘S 3

stands for the symmetric form

in (3.3) in the order listed correspond to an elastic state, unloading

fron an elastic-plastic state, neutral loading, and loading from an

The rate

Moreover,

(3.3)

(3.%)

(3.5)

of -+—§£—) . Using the conventional terminology, the four conditions

Supplementary to the above, we need constitutive

9.
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vostulates for the internal energy U , the temperature T and the i:

*
Tlux vector Qe - Thus, we introduce

U= Ule

and &lso assume that T and

K—L) e%L: S) >

v

QK are funcitions of exrs k12

Q.. depends in addition on T, .
K N

With the foregoing background, we now record certain addition 1
results from the theory of elastic-plastic continua [1,2] whica w.1l be

utilized subsequently. The constitutive equations for e

toth of which hold during loading, i.e., wvhen f

. A
neutral loading, i.e., when f =K , K =0 and £=0 . In {3.,) and

(3'8)3 %qu
”  and

function of Syr,? ML,

and BKL are tensor functions and A 1is a positivz

$ . In addition, we have

*As in [2], we may 2llew U, T, QK , as well as the stress ter ov

to depend also on K whose rate is specified by (32.8) belcw

"
KL

A
=K , >0 or cvring

(3.6)
3 ar. vhat |
ard « are 3
(3.7)
'
1E
(3.8) ;
§
;
scalar
]
sKL s

Tor

simplicity, we retain here the constitutive assumptions of t': forms
(3.6) and (3.1) but note that the inclusion of ¥ as an inde eudent
variable will not alter the structure of most of the results .n later

sections of the paper.
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= ; < = cﬁ

: ° %, Yo ?;eﬁ 3 (3.10)

&z IR sz ihe Imecualily
-, 2,20 , (3.11)
aEsie owe -Fv-.*‘:::,.::-r.:w— of reies znd ere vaiid voth 'ur’@ i "éing ané un~
- . . - A

inziiee, X ver, ¥oem L =% and RAE¥I>0,

-~ P - - ‘F’- ou_ ¢ =

- @..,K Pe TS poaef'_e'glx—o ? (3.12)
b = 1

-2 AI—= —;Q.TXEO s 7 (3.13)

et o]

"Ee zercizi derivelive [ is understood (o have the symmetric form
3, o P . Gv',_’,

ﬁ‘&*.- = < ) e

TR X

= .

zagi (21 for deteils. Although the main developments

iz 37 2>z cerried out in terms of the Helmnoltz free energy function

322 ¥ a5 an irdependent thermodynemic verizble), resulis cor-

responiing to (3.6) ané (3.10) are also discussed [1; section 6]. In
L

1, the basic kinematic variables are eé’{L

z=f e, %n2ich is defined by (2.3), while the originsl form of the

X
“reorr in 53 inveld ef nd 2 verisi 3oy 3 r _ -e” .
zeory iz 131 espioyed ey, and 2 varieble defined by &= ®x1” Sk

s t¥o formc of the noniinear theory in [1,2] are entirely equivelent,
a:tzouzn in general tne latter (2l is preferable. As emphasized in
721, iz verizble e’ is not an "elastic” strain in the usual context

2 eizsticity; only in restrictive cases or in the infinitesimal theory
2 eizstic-plasiic continua, e;l, is an elastic strain tensor and is
Izdepende a . :

k.
"y
2

1l.
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vhere (3.13) is deduced from (3.12) by considering an arbitrary hovogeneous
temperature distribution for which T, = 0 and recalling chat A >0 .
P

The above resulis are valid for any elachic-plastic coatinuum. For

leter reference, we note that & medium is called elastic-perfectly plastic

if The loading function f and the tensor function BKL reduce to the

- ++
orms

f(sm: S) = KO 5 BKL = BKL(SMN’ S) 5 (3'15)

whers LR is & real constant. Since £ is now independent of e%L s

the loading surface is always stationary. In this case, all terms in-

voiving =%~ vanish and h in (3.8) must also vanish. Neutral
de XL :

KL
lozding no longer exists and the condition for loading reduces to
A
=

O . TPurthermore, it follows from (3.9) that for an elastic-perfectly

plastic medium A - with B, remaining finite and, in place of (3.7,

we have

e%l; = 7\ Bm(sm]', S) b (3'16)
_ éu 8
T = —B—”L—gl—q—“ . (3.17)
)R TR

-
g

Tne definition of an elastic-perfectly plaestic material here is not

the same as that in [1; section 91, obtained by specialization of the
spatial form of the theory. A number of different definitions of elastic-
perfectly plastic materials are possible in the context of the nonlinear
~heory, but they coincide for a linearized theory.

12,
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The results (3.12) and (3.1L) remzin valid for an elasiic-perfacily

plestic medium, but the inequelity (3.13) must be replzced oy

= U

1
- — - = (g = . :z’-ia
Po M aei’ﬁ' o " T % K 0 (3.28)

In this paper, we restrict our attention meiniy To & medium whicz
is a non-conductor and also exclude the zneat sugply arising from exterzzl

ko

heat sources and energy losses due to radiastion, i.e.,

Q=0 , r=0 . (3.18)

N oU " P
TS = -~ =% e . (2.23)
Bem i
Also, by (2.9),
szo0 . (3.21)

Remembering the constitutive assumption (3.6), we differentiate (3..1('))2

to obtain

It is not essential to assume '3.19)2 which is introduced here

1
O
hd

simplicity of subsequent formulae. Furiher comment on this is na
in section 4.

o,
o
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Toriisd 1- 33, B is mon-zero. Fext, sbstitute (3.26) into (3.23)

R

T thet vaien

i

foh
13

(3.28) soive for 5:':{1_

ki
by

pCly =R

m=oTided & is ZEimfle. Houstlicn (3.27) zoids Surizg lcading wherszs
;'-:—E?-g ‘,"“:‘c‘&‘t“:—g Cr nemtrz I0233irnzs ¥E 22,

N
)
1]
ha
B
E‘m .
12
w
iV
A

Wox EzTer TSE ¥ iSO TSOOre 1oe resuit
cr _ -
e, = s (j.j{))
A0
Snl e TmATAE Seneiema 3 REme A £ i ml R Do SN A ~
=ien noids Surizz dozding and is ohizized from (3.26) aud (3.27).
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L, Aicceleration Discontinuities

. = x.(X,, t) denote the positicn at time © of the material
- I

0
N

ne reference configursiion is Xp and consider

ct

2 moving surfzce in the continuum, a smooth one-parameter family of points,

acrosSs Waicha certain derivatives of x_ (X,

¥ , %) have jusp discontinuities.

Such a surfece is celled a singuier surface or a wave andé mey be assigned

'..D
\S)

sre parameters. slitermatively, by elimination of § =and & , the

smoosh surface T(T) may be represented as

( t)=0 . (k.1)

™

~~
ct
Nt
e

[ol}
v’\

cvezion (%.1) locates the surface as a function of time in the reference

conliguration,

waere

e unit norral to ¥(t) will be denoted by

. Joisi 3 .
'.\;A = 93-3('; \V 9‘ (1702)

5 .)1/2 >0 (4.3)

~ne speed of propagation of the surface (%.1) is

1 vOn

[ lvel . (b .l)

<

]

$
i

}_ J
o

o R

e
A AN

b e
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. - + . . o . . e < e «
et R and R TDbe one sided adjacent neighborhoods partitioned

by £(t) and let F(XA, t) , a function of X, , be continuous in R

T . . . o ey <. .
and R but have a2 jump across ¥(t) . We define the jump in »(X,, ©)

across % &t vine © by

L=]

.l
F - F

\

= FAT(87,5),8) - BV (5,8),8) (&.5)

- -yt

where F and I designate the values of F on the two sides of
(%) epproached from the neighborhoods R+ and R , respectively.

.n wnat Tollows, we mainly consider a singular surface of order 2,
i.e., an acceleration wave bub also briefly discuss singulsr surfaces of

*
order m>2 . We call %(f) an acceleration wave in elastic-plestic con-

cinue.if x,, X, and therefore e e’  and or T) are continu func-
C T X, Xy ( fore AB), hp @nd S (or T) are continuous func
tions of XA and ©, while their derivatives (with respect *+o XA or ©) have

e
&t most jump discontinuities across ¥(t) but are continuous in R and
R . We also assume that the externally applied body force is so assigned
that P is a continuous function of X, for all % . It tzen follows

that the kinematical conditions of compatibility are (see, e.g., Truesdell

and Toupin [15, section 190])

T . .o
= = - = I 4
E Xi,ABB NaNghs ll xi,Aﬂ VA H ] ﬂ V2)‘i > (k.6)

"a singular surface of order O is a statlonary surface and & singular
surface of order 1 is called a shock wave. The terminology used here is
due to Hadamard [13]; see also Truesdell and Toupin [15] or Thomas [16].

17.
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waere ). is an arbitrary vector zné mey e celled tThe amplitude. More

generzlly, wnen ¥(%) is & singuler surface of order m wita respzsct

to M(X,, t) , the jumps in mih pariiel derivatives of M(X,, t) are

' Je
<
[411]
=
Ol
&

g 3

'[3’:——'-4 A= (-v)" N, +-oX, u, (r=0,1,...,mané n=1,2,...%. (k.7)
[T R WY S | A L =0 2 > =3
o>t i 1 o

in (4.7), ¥ may be reogarded as tensor of any order and u is an

Por zr. accelizrztion wave, in view of our consiitutiive assumptions

in secivion 3,

8y
(.8)
3 o T .
Aoy 0 ko 0 Saw 0 D o0 R 0 G o

rmusST be coavinuous across a singular surface for all X& and t© .

The dynenmical equations (2.6) hold on either side of the wave, bub &t
Y >

a singular surface of order 2 they yield

Xi,Aﬂ 8,3 B * H 3,48 3 5p3 T Poﬁ % H : (k-9)

Recelliing (L4.6), application of (L4.7) to the first derivatives of the

stress gives

. i \
v ‘ SYT, L n = - Ko S E ) (+.10)

18.
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and eguation (k.9) tecames

- xi,.axﬁ 23 B = V(RS - 0 n =0 , (%.11)

#
wnere (4.6) and (%.10) nave teen used. Also, fram (3.20), we nave

[:1--3=0x] - (s.12)

Provided 33/5'3%3 does not vanish, eccordéing to (4.12), the jump in
t_heﬂentropy productios is linear in the jump of plasiic sirain rate.
It is therefore clear that acceieration waves (wita V # 0), in 2 non-
conducting elastic-plastic medium, are not ho:.qentropic'i.'

In the rest of {his section, we consider three types of wave propa-
gation as follows:

(i) In the zbsence of lozding from an elastic-plastic state, on
either side of the singular surface %(%) , we have either a state of

unloading ¢r neutral loading. Recalling (3.29), we then write

*
+ is not difficult to see that the result.(4.12) holds even without
the assumption (3.19)2; it is only necessary to assume that r 1is a

continuous function of XA for all ¢ .
+An acceleration wave is called homentropic if [[ S ]] = “: S,M ]l =0 .
(Recall that if [[ éﬁ: 0 , it follows from ‘I s ]] = 0 that

E S,M D = 0). Tne relation (4.12) may be contrasted with the cor-

responding result obtained by Coleman and Gurtin [5]. For the class
of materials with memory discussed in [5], they found that every ac-

celeration wave (with V 71 0) in a non-conductor is homentropic.

19.
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7 the help of (2.%) and (4.6) this becomes

o
13
2t
&,
ck

g

h

{
7
2o

s M

e T.o.-
LS 4= =00 Vhgy Sy ey Ny - ;

[P

Using the nctation V = V(e) for this case, substitution of (k.1k) into

-

| ] . =
(%.21) resuite in

(&.15)

| ey - (o) - ey =0

art tae associated eigenvaiuve equation is

e R

det { (V%e) (I\‘))él,]} P (24-.16)

wnere wWe nave defined

(4.17)

NMathematically, this case is similer to that for nonlinear elasticity

playing the role of the homentropic acoustic tensor and with

- . with A, .
. iJ
ﬂ S ﬂ = 0 . Here, however, the tensor Aij depends on the current
state of plastic strain e%L , as well as on €y and S ; 1t can be

identified with the homentropic accustic tensor of elasticity only when

the medium has no prior history of plastic deformation.

20.
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(ii) Wmen loading is taking place on both sides of the wave front,

o then by (3.27) we have

- _ Ca - ; .
H Sx1, B = 0o = O, By g, em\*]] >

or

IT . ﬂ__ - T N v 1RY
Lo 1= 00 Vmm - O, Bad ™y B M 0 (.18
if we also use (2.4) and (4.6). Then, with the notation V = V(p) for
tais case, from (4.11) and (4.18) we obtain
R 1
A,. -G, H, - (V| - 25 I =0 L,
{ 15 G, 5™ Vo) o (N))ﬁlg}xg > (L.129)
and the associated eigenvalue equation is now
1
det §A.. - G, H, - (B \ - = 6.3 =0 L.,20
thyy - 0y By - (Vi) o (w))845] ’ (.20)
where
G =% 0 W &g >
(k.21)
i -
. Hj = Xj,N NM HMN .

~

Tnis describes the propagation of an acceleration wave through a region

“

21.
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undergoing plastic deformation, i.e., & vlastic wave, and will je Zfurther |

discussed in the next section.

+

B

(iii) Finelly we use the notetion V = V(u) to correspor . Lo the

case when the vegion R is in a state of loading and the regio: R
is in a stete of unloading or neuirzl loading, with V= V(z) correspond-

inz to the reverse of this situation. In the first of these c«ses, it

——

forlows from (3.27) and (3.29) thet

T . o
] 3w o= i - T
1 5%, 17 0 Ay il emﬂ 06 G, Bar S
. i
=05 V() Axoar v Fie,m M T Po Sk P G (k.22)
Hence, with the help of (4.11l), we obtain

1 1 o
(- (V%u) T S(N))éij})‘j = - %:)- G, Hooen - (4 .23)

. e B + « . q .
(n the other hand, vheuw R 1is in a state of unloading or neutral loading

and R is in a stave of lesding, vy (3.27) and (3.29) we uave

i

1 S
b+ 0o G Eay S

0o A {[ S\

]

= po(Amﬁ\T_GKLHMN)‘IeNm“+poGKLHNﬂ\IeN

- ;+ 1]
== 0070y P e Bae™y B Mt Po B B B (.2%)

“Tn the literature, the term "plastic wave" is often ust i to denote a
roving elastic-plastic interface (see, e.g., Hopkins [ 71).

22.
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AR §

oo (BIR) == {5.3%) Soiiows the sersiion

5(7 ~oow ) 12 3 \ . i - i I o5
W T H S TV T, S @ % T Vi & C (+-25)

- . . 3 e
Toe 1zoT THG cesse corzespont o & front of unlozding proparating into &
sizzzically siressed regon and @ plasiic loeding fromt, respectively,
- P -5 - - < - -—— iAo e "= ~ - ~
end 39 =0T zive riss ©0 eigenvelme ecuziions. These will be discussed :
Ty ~
- zzovion S :
i
. i
Lo = e ——— - - o - -~ - - . rman’ R - 4 ~% -
Trz ziore develomwrenis are carried out for & work-nardening elastic- '
i
18
Tz Tic somtimmen whick indtisiiy is anisotropic. We now note that the I3

rezxis (- 27), (B.21), (:.23) and {L.25) nold elso in the case of an elastic-

zstic econtimmm. Recalliing (3.16) azd the fact thet in this

gase, 22 oossrving o=t the only term in Tthe above formula: wolcn depernds
ez 2 ZIs &, d&uxring ioaling, it follows ihat as A - o, '
PR L Pty '
1‘\1 = 5 (C 3 + U ) ? ()"“20)
st 'y —
PQY A TAZE )
2o zn eizsiic-perlecily vlastic nmedium.

The resclits obiained in this section are valid for an elastic-plasitic i

zzferiz? which is @ non-conductor. However, it is alsc possible to dis- .
cuss & perailiel develorment for z definite conductor, i.e., for & mediunm

. . es . . . - +
E2CSEe 2gae COonCuUCTidn vecwtor o one 10rm

Tcuation (L.27) is in the form o:‘ Fourier's law and the heat conduction

Tensor ?-;g_ & function of e © .f\, and T, is positive definite.

23.




s more coavenient to cnoose T (rather than S) as an

$s

in Tris cese, it
independent trnermolynamic variable and to use the form of the theory in
vwaich the constitutive equations are expressed in terms of the Helmholtz

-

Tree energy Tunction

A=U-T8 , (:.28)
tczetner with evpropriate chenges in section’ 3. In view of the con-
stivucive and smoothness assumptions, it follows from the integral fornm
of the ecuation of balance of energy thet every acceleration wave, in an
elastic-vlastic material subject to Fourier's lew of heat conduction, is

. . . ¥
aomothermel, i.e.,

[1-Dad-e - (9

Moreover, we now obtain

Eéﬂh%az;ﬂéh\ ’ (%.30)

in place of (4.12). It should now be clear that results parallel to those
between (4.13) and (4.26) can also be deduced in this case, but we do notc

pursue the matter further.

Fror details, see (1,2]. In this form of the theory, A, Ser, a0d S, as

well as T, hKL and sKL’ are functions of S e&N and T. Also, instead

of (3.19),, we only assume that the heat supply is so assigned that r is
a continucus function of XA for all t.

This coaclusion parallels the corresponding result for elastic materials
E3] and for the class of materials with memory considered in [5] with
Tne heat flux vector in the form (4.27). For a definite coaductor, the
neat conduction tensor in (5] is given a more general definition then
taet in (4.27).

*
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5. Dizsiic Feres
We hzve snown Thel She speels ¥ (z) 3T E=icn
-
, must identically satisfy The eigsnvelue eguell

reze values of V(“) are the only speeds at

To invesiigate sufficient conditions for

TC xmown Droveriie

wpica,
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ARl =
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tensor defined
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‘A’KI.W is positive definite in the sense that
J % /3)
b Vi, M 20
25.
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is given by (3.25). IZ 2, is an erbitrery vector, tiez
2 = = e % ¥ § 2
13 %3 75 (2 "i,L)(';: 5,507 Yy taum e

From (5.1), one concludes thet &, 1is a positive Gefinile zzlrix IT
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for all arbitrary symmetric W

XL with the equality hoiding if and only

if WKL 1s identically zzro.

If (5.3) holds, then the matrix Aij nas three real eigenvalues,

which may be ordered numerically as

zh (5.4%)

and which identically satisfy the equation
det \Aij - A, 513\ = C (@=1,2,3) . (5.5)

Assoclated with these eigenvalues are a set of three eigenvectors
¢§d) (¢=1,2,3) whnich are found to within a scalar magnitude by the

homogeneous cystem of equations

(Agy - A, 8] ¢§“) =0 . (5.6)

Wow, following the technigue used by Mandel [10], let the eigenvectors

¢§a) be referred to the principal directions of the matrix Aij and

weite

Ay = Ai 63:5 , (5.7)

where & bar below an index signifies suspension of the sumation convention
for that index. Then, the eigenvalue equation (4.19) for plastic waves

becomes

26.



det | (4, - Yoy = 0 K=o (5.8)

vhich when expanded hae the form

P(Y) m (Al - Y)(A2 - Y)(A3 -Y) - Gy Hl(A2 - Y)(A3 -Y)

- Gy HZ(A3 - Y)(Al -Y) - G3 H3(Al - Y)(A2 -Y)y=s0 |, (5.9)
where
- -—:1;-
V) TR (5:20)

Since (5.9) is a cubic polynomial, at least one of the roots Ya (¢wl,2,3)
must be real, Of course, with the help of (5.10), it is seen that the

wave speed Vggg corresponding to Yu will be real only if '

Y +-:-1'-s
o Py

) g0 . (5.11)
(o]

N

We also find from (5.9) that
P(A)) = = 0y Hy(A) = Ay)(A) - Ag)
P(Ay) = Gy Hy(A) - Ay)(Ay = A3) (5.12)

P(As) = - Gy HB(Al - A3)(A2 - A3)

27.



In view of (5.4), we observe from (5.12) that P(Al), P(Az) and P(AB)
have the signs of - Gl Hl y + G2 H2 and - G3 H3 , respectively. Noting
thet P(Y) » - as Y-+ o while P(Y) ~+® a8 Y = - @ , we deduce

the following information about the wave speeds:

It Gl Hl’ G2 H2 and G3 H3 all have the same sign, then Yl’ Y2
and Y3 are real and distinct; if this sign is positive, then
AlEYl_A2§Y2§A3§Y3 R (5.13)
vhile if it ls negative,
Y, 2A EY, 24, ?_Y3§A3 . (5.1k4)

It is clear, however, that if Vggg is to be a real wave speed, the
inequality (5.11) must hold.

By comparing (5.6) with (L4.15), we further observe that Ad are
precisely the eigenvalues for the case where there is no loading (i.e.,
additional p;astic deformation) on either side of the wave front. It

would, therefore, be of physical interest to compare A the speed of

l 3

the fastest "elastic” wave, with the real roots among Y., ¥, and Y3 .

Similar comparisons for A2 and A3 may be of interest.



oy

6. Fronts of Ioading and Unloading

Any surface in the medium which separates a region of loading from

o oo . . . .-
ne of unioading or neutral loading is called an elastic-plastic interface.

With reference to case (iii) of section 4, suppose such a surface is moving
through the medium with an acceleration discontinuity coinciding with it.

For a specified history of loading and for known conditions ahead of the

front, formally, we have
— ’ " — i
e = eKL(XM’ t) |, e = eKL(XM’ t)
(6.1)
SKL = SKL(XM, t) ) S = S(XM’ t) >

these quantities being known functions of position and time. From (6.1),

we can compute the strain rate ahead of the wave frons, i.e.,

é"KL = é;cr.(xm’ t) . (6.2)

Using (6.1) in the left-hand side of (3.2), we may then define

¥y ) = 205, (X £)5 e (X5 £)5 S(Xs £)) - 6 (6.3)

where ¥ is a known function of XM’ t . The velocity V of the
elastic-plastic interface, and hence of the surface of acceleration
discontinuity, may be computed from (6.3) by a formula of the type
(4.4

Since €. and V are determined as functions of X, and t 5

XL A
equations (4.23) or (4.25) each constitute a set of three linear

29.
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inhomogeneous equations in the discontimuity amplitudes li . It follows
that li can be determined uniquely for both cases, except when the
determinants of the coefficients of Xi vanish, However, these cor-
respond to cases in which the speeds are precisely V(e) and V(p)
characterized by (4.16) and (4.19), respectively. For example, suppose
the elestic-plastic interface advances into a plastic region with the

speed V(e) satisfying equation (4.16). fThen, provided G, #0, it

follows from (%.23) that By é;N = 0 . Hence, using (3.30),

eit=0 , (6.4)
so that we no longer have a region of loading just anead of the wave --
it can be one of neutral or unloading region.
On the other hand, suppose the elastic-plastic interface advances
into a region of unloading or neutral loading with the speed V(p)
satisfying equation (4.20). Then, provided G; # 0, it follows from
(4.25) that
{(6.5)

o
HMN eMN = 0 .

‘This corresponds to propagation into a region of neutral loading, if we

recall (3.30). Some of the results of W. A. Green [12] obtained under

more restrictive conditions are compatible with those given here.

30.
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derivejives are continuous at such a surface, the junp of the time

erivative of tne eguations of motion (2.6) iekes the form

[4))

(7.3)

1]
.
Lo
{
==
oF
12
to
fanrst
w
Lo
1]
o
O
===
(===

}

¢z of () is in a state of loading,

RS AR MR AR S A R e

| 3 1= oot - &g HM\T)Xm,M[ ;;m,Nﬁ ’ (7.4)

the case (ii) of section 4 and the resulis

7 (7.1). This corresponds 1o
correspending 10 (1) and {iii) can be discussed in a similar manner. 1
j?:
Meking use of (4.7), we find the jump relations for 3rd order parvial i
derivetvives of displacement and 2nd order pertial derivatives of stress.
They are
X, e || = N, NN L Hx | =-vu, m g
E i,ARC ] A "B °C gl : i,AB ATB gz ’
(7.5)
. T T e
i 1-Pue s [5]--7g
ﬂ i,A ﬂ NA Ql ’ i V3 gl ’
and
0 s ﬂ=NNv , Ws }1=-VN v, ,
. L°XL,pQ 4~ P TQ KL L “KL,Q Q KL
(7.6)
s, ] - V..
H XL KL
32.
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where gi is an arbitrary vector and v is an arbitrary tensor.

jen
Applications of (7.5) and (7.6) to (7.3) and (7.k) give

v Vir, = Pollxrpg = Cr, Bpg)*n,p v No &y (7.7)

“Vx. N v ¢

%AV vap - Vg M Mg 65 = - pg (7.8)

i

After eliminating v,, between (7.7) and (7.8), with the help of (4.17)

and (4.21), we obtain the equation
‘ 1
A, -G H) - (P-25,.)6.1.=0 . .
/ | oy - 6 1) - (V=25 5oy e (7.9)
_Comparison of (7.9)7with (4.19) gives the desired result. In an analogous
“menner we may show, by differentiating (7.1) and (7.3) a sufficient

"'numbérfof times, that singular surfaces of higher order have the same

plastic wave speeds as those of order 2.
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Yle consider unere the simple example of plastic waves, = an initially

homogeneous and isotropic material, corresponding to the 1 i-axial motion

gt Rt 2t AUTIL I Lop il K 7L v A

x, = %X, ), Xy =2y s #y = X3 . (8.1) |
g
i
3y (2.3) zxa (8.1), we have :
i
i
4
% ‘
1,2 ! . i
€4 =5 (v -1y , v= S all other e, = ) , (8.2)
Lo
throughout the history of deformaiion and we also assume
i
a-o/ : " &
€, #0 , allotherer =0 . (8.3) 3

Here, we concern ourselves with only one aspect of the roblrm, namely x

the Getermination of velocities of propagating waves ir ¢n lsutropic
material, using the resuwits of section 4. Thus, we ass e thel a state

of vplastic deformation corresponding to (8.2) and (8.3) .s compatidle

witn the field equations which must also be used in a « uaplete analysis
of the problen.

Before proceeding further, we need to recall cert . o resulis con-

ceraing the forms of the constitutive functions of sec:;lon 3, For an

initially isotropic material, the internal energy func:;ion U , the 4
A

o loading function L, BKL and the work-hardening tens.r h_. are

< Fyeu)
3k |
4
i
i
ks Ty P »omA - e,

, ot e oA R W ng

e

5 i
i Tt s ST I RO g 7 achendy
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i
5
q
i
- i
feomrosic Surmasio-c “hzt e zmiEe TEha =3 cccitia i
EsCTzopic Tumsilons of thsir erguments.  Then, is expressivie as g :
- i
fTmeticon ©F Tz anirsny S and the fern joint inmveriants 1
:
;
!
- = - = - - {
Le = S e = & e, = & = = i
3 % T2 L. 2 T3 Sxm tix Sy =
LT 3 L TIM K :
(8.k) %
i i
%
- L =7 - _ en ~ T8 - =X /4 =7 H
LTz o 27w 0 37 T Tm T ;
;
1
b
1
1
'
. =e_ & j,=¢e, e._ ¢&" H
P A & G 2 LD T 2 o
i
(8.5) =
5 i

- _ Y4 A - - " /4

do=& . €., &, , d, =¢&_ &, &

X, =85 X, = S Sqr 2 K3 = Syr Sty S 0 (8.6)

| (8.7)

- _ o - _ Al

n
3% Cp Stm x> M T Sk o Sww Sk

Tne constitutive eguation for has the form [1]

Bxr,

TOur discussion here parallels that in section 7 of [1), where further
details can be found.
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SR TE A TR A TR SR SO,
= + S,, + (s..) ,
n,,%h n n, 0 22y 22
22 33 o] 1 2
Pio = Boz= B3 =0
Pip = M3 =030
end the components of Sgi- become
XL
of of of 2 3f v BF n \e 3f
== 22—+ 2 5, Z— 4 3(s.. )"  E~+ e + (e?) =
sS4 aKl 11 3K2 11 BAB 11 BLl 1l BLZ
oo B, (e 2 o B
+ 2 7y 819 3L3 + 2(ell) S19 oLy s
(8.14)
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From the results (8.9) to (8.1L), we can now obtain the following informa-

tion about the coefficients on the left-hand sidec of (3.25) and (3.28), i.e.,

38.



Avyyp ™ Apyyg ™ Araog ™ Aipyg ® Aroon ® Apops ® Ayoas

= Aygop ™ Aygog ™ Apgaz ® Axpo3 " Aoyt 0

(2.15)
Cip=Cp3=Cq =0 » Dyp=Dpg=Dy =0
Hyp = Hyg = Hyy =0 5 Gp = Gp3= Gy =0
and
Ao1z = A1313 © Aaze3
Ayiop = Ay133
Aoope = Bao33 = A3333
Co2 = C33 » DPa2=P33 >
Hyp = Hya 5 Gpp = G33 ' (8.16),
B

1212 = B1313 = Bazpy
= B s

1122 = B1133

Bpoin = Ba311 v

Booon = Bpp3y ® B3zpp = Bizzz
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together with results analogous to the first of (8.15) for By
With the help of (8.1), (£.15) and (8.1&), the value of S (1) and the

ncn-venishing components of 'Aij’ G, and H, in (1+.l7)2 end (4.21) are

J

S(w) T f11 %1t S22

2[N2 A

e -
A =Y N Ayt (32 + NQ)A I,

3771212

\

Ayp = ¥ Ny NMylhyaop + RAyppp)

Ay = Y N Wo(Ayyon + App) (8.17)
_ P
dop = Ni Apip * (Né * Ndhpoos
Bog = Ny NalApons + A1510)
- 2 2
hyy = (O + Wiypys + 15 Agnes
and
Gp = YNy Gy s G= M G s Gy=Ni Gy
(8.18)
By =yN By, » H=NLHEL, , H=DNHL,

For a prescribed wave front wnich is specified by its normal NK

(zenerally & function of position), we may substitute (8.17) and (8.18)

Lo.



-

into the eigenvalue equation (4.20) and thereby determine the wave
speeds.
Consider now a plane wave front whose normal is at an arbitrary

(oblique) angle to the Xi-axis. Without loss in generality, we may

choose the direction of the X3-axis to be perpendicular to the plane
of the Xl—axis and the normal to the wave front. In this way, the

problem is reduced to & two dimensional one, so that

N

2 ) (8.19)

N, = (N

K 1

where N,, N, are constants (for plane waves) satisfying

1’ 72

%=1 . (8.20)

In view of (8.19), (8.17) and (8.18) simplify and the non-vanishing
components of (L.19) become

(A, . - G, H, - Y)kl + (Ala - Gy H2)x2 =0 K

1l

!
O

- - - = a 5
(A12 G, Hl)xl + (A22 G, H, Y)x2 , (8.21)

(A,, - Y)k3 =0

22

where the coefficients in (8.21) are obtained from those in (8.17) and

(8.18) after setting N, = O and where Y is defined by (5.10).
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